ES930 Timed dosing

Introduction to timed dosing of effluent

Concept

- To apply effluent in equal doses, spaced at equal intervals
- Dose volume (dosing time)
- Inter dose interval

Flow equalization

- As doses are equally spaced, peak flows must be equalized
- This requires a large reserve volume in the pump chamber or/and other flow equalization in the system

Is flow already equalized?

- Example, dosing of effluent to SWIS from a sand filter that is time dosed
 - This may allow demand dosing
- Or, example effluent from a collection system/treatment plant that is already equalized to a large extent
 - This may permit considerable reduction of reserve volume needed in pump chamber

Large systems

Equalization will be designed per instructions in the EPA manual

Medium systems

 Pump chamber size guidelines are available, example Washington State guideline:

Daily Design flow (gpd)	Minimum pump chamber capacity (gallons)
< 1000	1000
1000 - 2000	1500
2000 - 3000	2500
3000 - 5000	3500
5000 - 7500	4000
7500 - 14500	5000

Small systems

- Guideline (SPM and others) for 2 x Design flow
- Allows sufficient space for simple control system, may require more volume with more complex control systems or with pumps that require a greater water depth in the tank

Dosing regimens

- Will the system or distribution network drain?
- If so, the dose will be restricted to one that addresses proper distribution
- At least 5x the draining volume (or more complex calculations for a drip system)
- For drip systems consider dose time plus pressurization time, try to ensure at least 80% of dose is well distributed

Not draining

- If possible, sand mound distribution network should not drain
- This allows for very small doses
- Consider that part of pipe may still drain
- Consider need for good scouring and more frequent flushing.

How often?

- 12x per day at design flow is a good target
- Some systems dose as many as 100x pd
- If draining/distribution concerns are involved, lower figures may be required.

Pump run time considerations

- Work with your manufacturer to select pumps that can tolerate short cycles
- Soft start turbine pumps may be applicable
- Smaller pumps may be more tolerant
- Keep pump well cooled.

Design or average flow

- Timed dose may be based on the design flow or the average flow
- Design flow allows for simple control system, average flow normally uses a control panel as there must be programming to increase the dose frequency as flow goes above average

Floats

- Timed systems may need several floats and a control panel
- Consider use of a pressure transducer/control panel combination or ultrasound sensor

Float setting

- System will have a low level alarm float
- May have a redundant pump off float (unless pump has run dry protection)
- Timer allow float
- Lag 1 float
- Alarm float
- Lag 2 float

Low level

- First, a low level redundant pump off float and low level alarm
- Low level alarm lets you know the dose volume is being exceeded during the on cycle
 - May have pipe leakage
 - May have defective control
 - Timer allow float may have slipped
- Should be installed even with pressure transducer or ultrasound systems

Timer allow

- Set at somewhat more than the dose volume above the low level off float
- Allows timer to start
- Will not result in dose-just in allowing the timer to work
- In simple systems directly controls supply to electromechanical timer

Lag 1

- In systems which are designed to dose based on average flow, this float switches system to dosing at design flow
- Normally by halving the inter dose interval
- For small systems, set at 2/3 design flow above the timer allow float

High level alarm

- Normally set at 1 (0.67 to 1.5) X the design flow
- May directly act as lag 2 float in simple systems
- Must not self reset

Lag 2

- Set slightly above the alarm float
- This activates override dosing, may act as demand dose float
- Consider potential impact on SWIS
- With twin pumps may activate both pumps
- In simple systems dosing based on design flow this is the lag 1 float

Alarm reserve volume

- As for demand dosed systems
- Guideline 0.5 x design flow
- May be more in some cases

Event logging

- Flow meters
- Logging of all events
- Allows for adjustment of timed dosing and troubleshooting

Timers

- To set dose time, base on dose volume ÷ pump run time
- Set interval by calculating inter dose interval based on 24 hrs minus total dose time, divided by number of intervals
 - Round to sensible number

Simple control system

- Electromechanical timer, set to interval, triggers a
- Time down relay, set to dose time